Resumen
This article gives a state of the art of temporal neural networks and a comparison of three recurrent neural network which are most representative for applications of dynamic monitoring and prognosis. The criteria of selection of these networks are at two levels: a temporal criterion and an architectural criterion. Following the application of these criteria, three recurrent networks seem relevant: the RRBF, the R2BF and the DGNN. Tests using a benchmark of dynamic monitoring and a benchmark of prognosis enable us to evaluate the performances of the three temporal networks in term of computing and processing capacity time.
Título traducido de la contribución | Use of temporal neural networks for prognosis and dynamic monitoring: Comparative studies of three recurrent neural networks |
---|---|
Idioma original | Francés |
Páginas (desde-hasta) | 913-950 |
Número de páginas | 38 |
Publicación | Revue d'Intelligence Artificielle |
Volumen | 19 |
N.º | 6 |
DOI | |
Estado | Publicada - 2005 |
Publicado de forma externa | Sí |