Uso da análise de cluster para o estudo da criminalidade no Estado do Rio de Janeiro

Max William Coelho Moreira de Oliveira, Miguel Fernández Pérez, Aldo Fernández Pérez, Wagner Santos, Antonio Costa Neto

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This article aims to construct clusters based on historical data of thefts in the State of Rio de Janeiro, aiming to identify possible similarities among the records. Monthly quantities of vehicle thefts, robberies on public transportation, pedestrian robberies, cell phone thefts, cargo thefts, and robberies at commercial establishments were selected. Using these records, the k-means algorithm was employed to build clusters, resulting in two subsets of records. These subsets present distinct characteristics and are valuable for analyzing the interaction between different types of thefts in a disaggregated manner, thus avoiding statistical fallacies. Additionally, we propose a classification model that establishes criteria for assigning scenarios to a specific cluster. This model can assist in developing more effective strategies in public security, and in the use of human and logistical resources.

Título traducido de la contribuciónUse of cluster analysis to study crime in the State of Rio de Janeiro
Idioma originalPortugués
Título de la publicación alojadaProceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education and Technology
Subtítulo de la publicación alojadaSustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0., LACCEI 2024
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9786289520781
DOI
EstadoPublicada - 2024
Evento22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024 - Hybrid, San Jose, Costa Rica
Duración: 17 jul. 202419 jul. 2024

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
ISSN (versión digital)2414-6390

Conferencia

Conferencia22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024
País/TerritorioCosta Rica
CiudadHybrid, San Jose
Período17/07/2419/07/24

Huella

Profundice en los temas de investigación de 'Uso da análise de cluster para o estudo da criminalidade no Estado do Rio de Janeiro'. En conjunto forman una huella única.

Citar esto