Unsupervised Video Summarization: A Reconstruction Model with Proximal Gradient Methods

Anali Alfaro, Ivan Sipiran

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

We present a regularized reconstruction model to address video summarization. We assume a video can be viewed as a subspace formed by a selected subset of frames, with frames represented as a sparse linear combination of these selected frames. Our method selects frames that contribute to the reconstruction of the entire video by leveraging both the structure and similarity between sparse codes. The structure is provided by groups of frames showing subtle or significant changes, while the similarity ensures a balanced contribution from the frames in these groups. We propose an optimization problem to produce a sparse representation capturing the relevance of each frame, solving this non-smooth problem using proximal gradient methods. We compared our method with state-of-the-art methods through experiments using a standard dataset and a new dataset for volleyball phase analysis. Our results demonstrate that our method produces effective summaries and outperforms existing methods.

Idioma originalInglés
Título de la publicación alojadaComputer Vision – ECCV 2024 Workshops, Proceedings
EditoresAlessio Del Bue, Cristian Canton, Jordi Pont-Tuset, Tatiana Tommasi
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas84-99
Número de páginas16
ISBN (versión impresa)9783031915840
DOI
EstadoPublicada - 2025
Publicado de forma externa
EventoWorkshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024 - Milan, Italia
Duración: 29 set. 20244 oct. 2024

Serie de la publicación

NombreLecture Notes in Computer Science
Volumen15639 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

ConferenciaWorkshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024
País/TerritorioItalia
CiudadMilan
Período29/09/244/10/24

Huella

Profundice en los temas de investigación de 'Unsupervised Video Summarization: A Reconstruction Model with Proximal Gradient Methods'. En conjunto forman una huella única.

Citar esto