Unsupervised dense crowd detection by multiscale texture analysis

Antoine Fagette, Nicolas Courty, Daniel Racoceanu, Jean Yves Dufour

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

21 Citas (Scopus)


This study introduces a totally unsupervised method for the detection and location of dense crowds in images without context-awareness. With the perspective of setting up fully autonomous video-surveillance systems, automatic detection and location of crowds is a crucial step that is going to point which areas of the image have to be analyzed. After retrieving multiscale texture-related feature vectors from the image, a binary classification is conducted to determine which parts of the image belong to the crowd and which to the background. The algorithm presented can be operated on images without any prior knowledge of any kind and is totally unsupervised.

Idioma originalInglés
Páginas (desde-hasta)126-133
Número de páginas8
PublicaciónPattern Recognition Letters
EstadoPublicada - 15 jul. 2014
Publicado de forma externa


Profundice en los temas de investigación de 'Unsupervised dense crowd detection by multiscale texture analysis'. En conjunto forman una huella única.

Citar esto