Unpaired Faces to Cartoons: Improving XGAN

Stev H. Ramos, Joel Cabrera, Daniel Ibanez, Alejandro B. Jimenez-Panta, Cesar Beltran-Castanon, Edwin Villanueva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Domain Adaptation is a task that aims to translate an image from a source domain to a desired target domain. Current methods in domain adaptation use adversarial training based on Generative Adversarial Networks (GAN). In the present work, we focus on the task of domain adaptation from real faces to cartoon face images. We start from a baseline architecture called XGAN and introduce some improvements to it. Our proposed model is called W-XDGAN, which uses a form of GAN called Wasserstein-GAN, learns to approximate the Wasserstein Distance, and adds a denoiser to smooth the output cartoons. Whereas the original XGAN paper only presented a qualitative analysis, the advantages of this solution are demonstrated both quantitatively and qualitatively by comparing the results with models such as UNIT and original XGAN. Our code and models are publicly available at https://github.com/IAmigos/avatar-image-generator.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
EditorialIEEE Computer Society
Páginas1517-1526
Número de páginas10
ISBN (versión digital)9781665487399
DOI
EstadoPublicada - 2022
Evento2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, Estados Unidos
Duración: 19 jun. 202220 jun. 2022

Serie de la publicación

NombreIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volumen2022-June
ISSN (versión impresa)2160-7508
ISSN (versión digital)2160-7516

Conferencia

Conferencia2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
País/TerritorioEstados Unidos
CiudadNew Orleans
Período19/06/2220/06/22

Huella

Profundice en los temas de investigación de 'Unpaired Faces to Cartoons: Improving XGAN'. En conjunto forman una huella única.

Citar esto