Towards a demand forecast methodology for recurrent disasters

J. Vargas Florez, M. Lauras, L. Dupont, A. Charles

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

10 Citas (Scopus)

Resumen

Humanitarian supply chains have received a lot of attention over the last fifteen years, and can now be considered a new research area. But a gap exists between the research work proposals and their applications in the field. One of the main issues is that the demand, in the case of disaster, is hard to assess because of the high-level of uncertainty. Gathering knowledge about future demand is of prime importance to be able to propose models, which are relevant to implement for a real problem. This paper tackles this problematic proposing a four-step methodology for forecast disaster impact, and in this way, the future demand, such as cyclones in the Caribbean or earthquakes along the Pacific Ring of Fire. This approach uses data analysis techniques such as Principal Component Analysis and Multivariate Regression Analysis. An application case on Peruvian earthquake demand is proposed to illustrate the benefits of our approach.

Idioma originalInglés
Título de la publicación alojadaDisaster Management and Human Health Risk III - Reducing Risk, Improving Outcomes
Páginas99-110
Número de páginas12
DOI
EstadoPublicada - 2013
Evento3rd International Conference on Disaster Management and Human Health: Reducing Risk, Improving Outcomes, DMAN 2013 - A Coruna, Espana
Duración: 9 jul. 201311 jul. 2013

Serie de la publicación

NombreWIT Transactions on the Built Environment
Volumen133
ISSN (versión impresa)1743-3509

Conferencia

Conferencia3rd International Conference on Disaster Management and Human Health: Reducing Risk, Improving Outcomes, DMAN 2013
País/TerritorioEspana
CiudadA Coruna
Período9/07/1311/07/13

Huella

Profundice en los temas de investigación de 'Towards a demand forecast methodology for recurrent disasters'. En conjunto forman una huella única.

Citar esto