Towards a Deep Learning Based Approach for Semantic Segmentation of Coca-Leaf Growing Regions in Satellite Images of Perú

Rosario Medina Rodriguez, Jose C.Eche Llenque, Fedra Trujillano Asato, Julian Llanto Verde, Tulio W.Chavez Espiritu, Jose J.Pasapera Gonzales

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The use of remote sensing to detect illicit crops is a trend that has increased over time. Regular in-person surveys are labor-intensive, time-consuming, expensive, and potentially life-threatening. Therefore, remote sensing techniques allow a small number of analysts to locate scattered sites of illicit crop production in large areas. The National Commission for Development and Life Without Drugs (DEVIDA), deliver a report on the monitoring of coca cultivation in the country on an annual basis. The report is based on the visual analysis of high spatial resolution satellite images recorded between July and November of the year prior to the submission of the report. The present study shows the first study based on deep learning for the semantic segmentation of coca leaf growing regions in Perú. For this purpose we use a U-Net architecture and SPOT-6 satellite images for the Pichari district - Cusco, Perú. We can conclude that the results are promising achieving an accuracy of 94.10% on the test image from 2019.

Idioma originalInglés
Título de la publicación alojada2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350365931
DOI
EstadoPublicada - 2024
Evento7th IEEE Biennial Congress of Argentina, ARGENCON 2024 - San Nicolas de los Arroyos, Argentina
Duración: 18 set. 202420 set. 2024

Serie de la publicación

Nombre2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024

Conferencia

Conferencia7th IEEE Biennial Congress of Argentina, ARGENCON 2024
País/TerritorioArgentina
CiudadSan Nicolas de los Arroyos
Período18/09/2420/09/24

Huella

Profundice en los temas de investigación de 'Towards a Deep Learning Based Approach for Semantic Segmentation of Coca-Leaf Growing Regions in Satellite Images of Perú'. En conjunto forman una huella única.

Citar esto