Tomato Leaf Disease Diagnosis Using Bayesian Convolutional Neural Networks

Asaki Seno, Renato Miyagusuku, Takeshi Kurokura, Kenta Tabata, Koichi Ozaki

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Plant disease diagnosis is a very important task for maintaining agricultural productivity. Convolutional neural networks (CNNs) are popular tools in the field of image recognition and have been widely used in plant disease diagnosis. However, they are prone to small data set overfitting and their inability to quantify uncertainty in their predictions can lead to overconfidence and errors. To address these issues which hinder the construction of practical plant disease diagnostic models we propose the use of Bayesian convolutional neural networks (BCNNs). BCNNs are robust against overfitting regardless of the size of the data set and the probability distribution of the models' weight parameters can be estimated to obtain predictive distributions whose standard deviation expresses their predictions' confidence. In this work, we develop a BCNN for plant disease diagnosis and perform comparative experiments between conventional CNN and our BCNN for plant disease diagnosis. Our results show that our BCNN model is more robust to overfitting than the CNN model on small data sets and that the confidence in its predictions can be when diagnosing plant diseases.

Idioma originalInglés
Título de la publicación alojada2024 IEEE/SICE International Symposium on System Integration, SII 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas623-628
Número de páginas6
ISBN (versión digital)9798350312072
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento2024 IEEE/SICE International Symposium on System Integration, SII 2024 - Ha Long, Vietnam
Duración: 8 ene. 202411 ene. 2024

Serie de la publicación

Nombre2024 IEEE/SICE International Symposium on System Integration, SII 2024

Conferencia

Conferencia2024 IEEE/SICE International Symposium on System Integration, SII 2024
País/TerritorioVietnam
CiudadHa Long
Período8/01/2411/01/24

Huella

Profundice en los temas de investigación de 'Tomato Leaf Disease Diagnosis Using Bayesian Convolutional Neural Networks'. En conjunto forman una huella única.

Citar esto