TY - JOUR
T1 - The use of artificial intelligence algorithms to detect macroplastics in aquatic environments
T2 - A critical review
AU - Astorayme, Miguel Angel
AU - Vázquez-Rowe, Ian
AU - Kahhat, Ramzy
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/10/1
Y1 - 2024/10/1
N2 - The presence of macroplastic (MP) is having serious consequences on natural ecosystems, directly affecting biota and human wellbeing. Given this scenario, estimating MPs' abundance is crucial for assessing the issue and formulating effective waste management strategies. In this context, the main objective of this critical review is to analyze the use of machine learning (ML) techniques, with a particular interest in deep learning (DL) approaches, to detect, classify and quantify MPs in aquatic environments, supported by datasets such as satellite or aerial images and video recordings taken by unmanned aerial vehicles. This article provides a concise overview of artificial intelligence concepts, followed by a bibliometric analysis and a critical review. The search methodology aimed to categorize the scientific contributions through temporal and spatial criteria for bibliometric analysis, whereas the critical review was based on generating homogeneous groups according to the complexity of ML and DL methods, as well as the type of dataset. In light of the review carried out, classical ML techniques, such as random forest or support vector machines, showed robustness in MPs detection. However, it seems that achieving optimal efficiencies in multiclass classification is a limitation for these methods. Consequently, more advanced techniques such as DL approaches are taking the lead for the detection and multiclass classification of MPs. A series of architectures based on convolutional neural networks, and the use of complex pre-trained models through the transfer learning, are currently being explored (e.g., VGG16 and YOLO models), although currently the computational expense is high due to the need for processing large volumes of data. Additionally, there seems to be a trend towards detecting smaller plastic, which need higher resolution images. Finally, it is important to stress that since 2020 there has been a significant increase in scientific research focusing on transformer-based architectures for object detection. Although this can be considered the current state of the art, no studies have been identified that utilize these architectures for MP detection.
AB - The presence of macroplastic (MP) is having serious consequences on natural ecosystems, directly affecting biota and human wellbeing. Given this scenario, estimating MPs' abundance is crucial for assessing the issue and formulating effective waste management strategies. In this context, the main objective of this critical review is to analyze the use of machine learning (ML) techniques, with a particular interest in deep learning (DL) approaches, to detect, classify and quantify MPs in aquatic environments, supported by datasets such as satellite or aerial images and video recordings taken by unmanned aerial vehicles. This article provides a concise overview of artificial intelligence concepts, followed by a bibliometric analysis and a critical review. The search methodology aimed to categorize the scientific contributions through temporal and spatial criteria for bibliometric analysis, whereas the critical review was based on generating homogeneous groups according to the complexity of ML and DL methods, as well as the type of dataset. In light of the review carried out, classical ML techniques, such as random forest or support vector machines, showed robustness in MPs detection. However, it seems that achieving optimal efficiencies in multiclass classification is a limitation for these methods. Consequently, more advanced techniques such as DL approaches are taking the lead for the detection and multiclass classification of MPs. A series of architectures based on convolutional neural networks, and the use of complex pre-trained models through the transfer learning, are currently being explored (e.g., VGG16 and YOLO models), although currently the computational expense is high due to the need for processing large volumes of data. Additionally, there seems to be a trend towards detecting smaller plastic, which need higher resolution images. Finally, it is important to stress that since 2020 there has been a significant increase in scientific research focusing on transformer-based architectures for object detection. Although this can be considered the current state of the art, no studies have been identified that utilize these architectures for MP detection.
KW - Circular economy
KW - Deep learning
KW - Industrial ecology
KW - Machine learning
KW - Marine litter
KW - Plastic waste
UR - http://www.scopus.com/inward/record.url?scp=85196615801&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.173843
DO - 10.1016/j.scitotenv.2024.173843
M3 - Review article
C2 - 38871326
AN - SCOPUS:85196615801
SN - 0048-9697
VL - 945
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 173843
ER -