The Starred Dixmier Conjecture for A1

Vered Moskowicz, Christian Valqui

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Let A1(K) = K ⟨ X, Y | YX − XY = 1 ⟩ be the first Weyl algebra over a characteristic zero field K, and let α be the exchange involution on A1(K) given by α(X) = Y and α(Y) = X. The Dixmier conjecture of Dixmier (1968) asks the following question: Is every algebra endomorphism of the Weyl algebra A1(K) an automorphism? The aim of this paper is to prove that each α-endomorphism of A1(K) is an automorphism. Here an α-endomorphism of A1(K) is an endomorphism which preserves the involution α. We also prove an analogue result for the Jacobian conjecture in dimension 2, called α −JC2.
Idioma originalEspañol
Páginas (desde-hasta)3073-3082
Número de páginas10
PublicaciónCommunications in Algebra
Volumen43
EstadoPublicada - 3 ago. 2015

Citar esto