The first NW European stratigraphic record containing an entire interglacial-glacial cycle of periglacial alluvial fan response to (sub)orbital climate fluctuations

Willem Viveen, Jeroen M. Schoorl, Ronald T. van Balen, Nik Trabucho, Freek S. Busschers

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Periglacial alluvial fans are common in northwestern and central Europe and their pre-Holocene stratigraphic records typically date back to late Middle Pleniglacial and Late Pleniglacial (late MIS3 and 2). Preserved stratigraphic records that include an entire interglacial-glacial cycle have, so far, not been described and it is thus unknown how periglacial alluvial fans responded during a full cycle of interglacial-glacial climate changes. In this paper, we reconstruct the evolution of the Eerbeek periglacial alluvial fan in the Netherlands which was deposited during the late Saalian (MIS 6) to late Weichselian (MIS 2) period, including the entire last interglacial–glacial cycle (MIS 5-2). Our reconstruction is based on 48, up-to 45-m deep borehole and Cone Penetration Test (CPT) logs that allowed the construction of an 8-km long longitudinal and a 7-km long transverse cross section over the Eerbeek periglacial alluvial fan. Age control was provided by means of 17, previously published, Optically Stimulated Luminescence ages of two boreholes on the fan, and 14 14C ages from three boreholes and a nearby, now abandoned, quarry. Overlying a thick, late Saalian (MIS 6) alluvial fan record, is a 4- to 18-m thick alternation of distinct organic (mainly peat and humic clays), siliciclastic alluvial fan (coarse- and medium-grained sands), Rhine (coarse- and medium grained sands), and aeolian (mainly medium-grained sands) stratigraphic units. Organic levels indicate fan stability during the Eemian interglacial (MIS 5e), and Brørup (MIS 5c), Odderade–Ognon interstadial complex (MIS 5a), and Middle Pleniglacial (MIS 3) interstadials 14, 13, 12 and 11 as well as late MIS 2 interstadial 1a. Clastic sediments indicate alluvial fan activity during the Herning (MIS 5d), Rederstall (MIS 5b), Ognon stadial complex (late MIS 5a), Early Pleniglacial (MIS 4) and upper Middle Pleniglacial (upper MIS 3) stadials 13, 12 and 11. Sediments from the coldest and driest period of the Last Glacial (late MIS 3 and MIS 2) are absent and following a phase of aeolian activity, the fan was only reactivated at the MIS 2 to MIS 1 transition (stadial 1). We attribute the absence of fan activity during the coldest period of the last interglacial-glacial cycle to the eastward orientation of the fan making it less sensitive to permafrost melt. The colder MIS substages and stadials in which the Eerbeek fan was active coincided with the presence of permafrost and/or a seasonal, deeply frozen soil, and a relatively humid climate during which vegetation was largely absent. The presence of channels that dissect the underlying organic units suggests that the Eerbeek fan initially responded to the changes from interstadials to stadials by means of erosion. As climate cooled and permafrost/deep frost developed, the fan switched to alluvial aggradation. The consistent presence of coarsening-fining upward sequences suggests a relation with cycles of increased overland flow due to increasingly more frozen subsoil conditions. The fan stratigraphy therefore shows the direct coupling between warmer-colder MIS substages and interstadial-stadial climate cyclicity and alluvial fan response over the entire last interglacial-glacial cycle.

Idioma originalInglés
Número de artículo109315
PublicaciónQuaternary Science Reviews
Volumen357
DOI
EstadoPublicada - 1 jun. 2025

Huella

Profundice en los temas de investigación de 'The first NW European stratigraphic record containing an entire interglacial-glacial cycle of periglacial alluvial fan response to (sub)orbital climate fluctuations'. En conjunto forman una huella única.

Citar esto