TY - JOUR
T1 - Survey of the Undergraduate Analytical Chemistry Curriculum
AU - Kovarik, Michelle L.
AU - Galarreta, Betty C.
AU - Mahon, Peter J.
AU - McCurry, Daniel A.
AU - Gerdon, Aren E.
AU - Collier, Steven M.
AU - Squires, Marjorie E.
PY - 2022/5/11
Y1 - 2022/5/11
N2 - This article reports the results of a curriculum survey of 322 analytical chemistry instructors (92% U.S.-based) conducted during Spring 2021. This snapshot of current course formats, topics, and pedagogical methods will be useful to both seasoned and novice teachers of analytical chemistry. The majority of respondents reported that their major requires two analytical chemistry courses, and 97% of respondents reported that at least one analytical course is required. Over 80% reported a required analytical lab course. The topic rated most important was standardization and calibration methods, followed by UV–vis absorbance spectroscopy, data handling, HPLC, GC, statistical analysis, general chromatographic theory, sources and types of error, mass spectrometry, and acid–base theory/equilibria/buffers. In general, topics that were rated as important were likely to be taught in required courses and addressed in hands-on laboratories. Over 80% of instructors reported the use of at least one evidence-based active learning strategy. In response to open-ended questions, instructors shared their strategies for student career preparation, project-based learning, and inclusive teaching, with these responses summarized using thematic analysis. Responses from 117 instructors give a snapshot of current efforts to promote diversity, equity, and inclusion, including cultivation of an inclusive environment, implementation of active learning, and examples of diverse scientists and culturally relevant examples. Respondents also reported the biggest challenge to their teaching, which was most frequently associated with obtaining and maintaining instrumentation. The results of this survey will help inform curricular updates in individual courses and programs and may inspire larger community-wide efforts to improve undergraduate analytical instruction.
AB - This article reports the results of a curriculum survey of 322 analytical chemistry instructors (92% U.S.-based) conducted during Spring 2021. This snapshot of current course formats, topics, and pedagogical methods will be useful to both seasoned and novice teachers of analytical chemistry. The majority of respondents reported that their major requires two analytical chemistry courses, and 97% of respondents reported that at least one analytical course is required. Over 80% reported a required analytical lab course. The topic rated most important was standardization and calibration methods, followed by UV–vis absorbance spectroscopy, data handling, HPLC, GC, statistical analysis, general chromatographic theory, sources and types of error, mass spectrometry, and acid–base theory/equilibria/buffers. In general, topics that were rated as important were likely to be taught in required courses and addressed in hands-on laboratories. Over 80% of instructors reported the use of at least one evidence-based active learning strategy. In response to open-ended questions, instructors shared their strategies for student career preparation, project-based learning, and inclusive teaching, with these responses summarized using thematic analysis. Responses from 117 instructors give a snapshot of current efforts to promote diversity, equity, and inclusion, including cultivation of an inclusive environment, implementation of active learning, and examples of diverse scientists and culturally relevant examples. Respondents also reported the biggest challenge to their teaching, which was most frequently associated with obtaining and maintaining instrumentation. The results of this survey will help inform curricular updates in individual courses and programs and may inspire larger community-wide efforts to improve undergraduate analytical instruction.
UR - https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00090
M3 - Artículo
SN - 0021-9584
VL - 99
SP - 2317
EP - 2326
JO - Journal of Chemical Education
JF - Journal of Chemical Education
ER -