Support vector methods for sentence level machine translation evaluation

Antoine Veillard, Elvina Melissa, Cassandra Theodora, Daniel Racoceanu, Stéphane Bressan

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Recent work in the field of machine translation (MT) evaluation suggests that sentence level evaluation based on machine learning (ML) can outperform the standard metrics such as BLEU, ROUGE and METEOR. We conducted a comprehensive empirical study on support vector methods for ML-based MT evaluation involving multi-class support vector machines (SVM) and support vector regression (SVR) with different kernel functions. We empathize on a systematic comparison study of multiple feature models obtained with feature selection and feature extraction techniques. Besides finding the conditions yielding the best empirical results, our study supports several unobvious conclusions regarding qualitative and quantitative aspects of feature sets in MT evaluation.

Idioma originalInglés
Título de la publicación alojadaProceedings - 22nd International Conference on Tools with Artificial Intelligence, ICTAI 2010
Páginas347-348
Número de páginas2
DOI
EstadoPublicada - 2010
Publicado de forma externa
Evento22nd International Conference on Tools with Artificial Intelligence, ICTAI 2010 - Arras, Francia
Duración: 27 oct. 201029 oct. 2010

Serie de la publicación

NombreProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
Volumen2
ISSN (versión impresa)1082-3409

Conferencia

Conferencia22nd International Conference on Tools with Artificial Intelligence, ICTAI 2010
País/TerritorioFrancia
CiudadArras
Período27/10/1029/10/10

Huella

Profundice en los temas de investigación de 'Support vector methods for sentence level machine translation evaluation'. En conjunto forman una huella única.

Citar esto