Specification and prediction of net income using by generalized regression Neural Network (A case study)

Hamid Taboli, Morteza Jamali Paghaleh, Asghar Afshar Jahanshahi, Raoof Gholami, Rashid Gholami

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Forecasting the future of mining activity is noted to be the most important purpose of decision makers. Net income is a particular parameter that plays significant role in gaining the attention of investors. It is demonstrated that by indicating key parameters affecting on the net income, prediction of net income will be considerably successful. Thus, the aim of this paper is to use an artificial intelligence method named generalized regression neural network (GRNN) for prediction of net income by taking into consideration of discounted cash flow table and six important parameters namely number of competitor, sales volume, annual cost, supply and demand, tax rate and inflation rate. Considering the six expressed parameters and Jade mine, Iran as case study, GRNN has shown appropriate result in the both training and testing step. As a result, GRNN has introduced itself as a robust method in the wide variety application of regression tasks.

Idioma originalInglés
Páginas (desde-hasta)1553-1557
Número de páginas5
PublicaciónAustralian Journal of Basic and Applied Sciences
Volumen5
N.º6
EstadoPublicada - jun. 2011
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Specification and prediction of net income using by generalized regression Neural Network (A case study)'. En conjunto forman una huella única.

Citar esto