Separable Dictionary Learning for Convolutional Sparse Coding via Split Updates

Jorge Quesada, Paul Rodriguez, Brendt Wohlberg

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

10 Citas (Scopus)

Resumen

Existing methods for constructing separable 2D dictionary filter banks approximate a set of K non-separable filters via a linear combination of RK separable filters. This approach involves the inefficiency of learning an initial set of non-separable filters, and places an upper bound on the quality of the separable filter banks. In this paper, we propose a method to directly learn a set of K separable dictionary filters from a given image training set by drawing ideas from convolutional dictionary learning (CDL) methods. We show that the separable filters obtained by our method match the performance of an equivalent number of non-separable filters. Furthermore, the computational performance of our learning method is shown to be substantially faster than a state-of-the-art non-separable CDL method for large numbers of filters or large training sets.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas4094-4098
Número de páginas5
ISBN (versión impresa)9781538646588
DOI
EstadoPublicada - 10 set. 2018
Evento2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canadá
Duración: 15 abr. 201820 abr. 2018

Serie de la publicación

NombreICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volumen2018-April
ISSN (versión impresa)1520-6149

Conferencia

Conferencia2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
País/TerritorioCanadá
CiudadCalgary
Período15/04/1820/04/18

Huella

Profundice en los temas de investigación de 'Separable Dictionary Learning for Convolutional Sparse Coding via Split Updates'. En conjunto forman una huella única.

Citar esto