Semi-Supervised Classification of Collapsed Building Using Remote Sensing, In-Placed Sensors, and Fragility Functions

Aymar Portillo, Luis Moya, Sandra Santa-Cruz, Nicola Tarque

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this paper, we demonstrate the application of a new methodology for rapid identification of damaged areas to the case of the 2016 Kumamoto earthquake sequence. The method aims to integrate Synthetic Aperture Radar (SAR) imagery, fragility functions, and intense ground motion maps to calibrate a neural network changes detector in SAR images. All the necessary data was collected within a remarkably short period, maintaining relevance to real-world applications. Our findings indicate that minimal labeled data, such as from just six collapsed buildings, is sufficient for optimal neural network calibration. Upon validation with third-party data, this approach achieved an 84% accuracy rate, suggesting its potential as an effective tool during the crucial post-earthquake response phase, as it can provide decision-makers with crucial information to efficiently organize and allocate resources, such as sending aid, food, and rescue squads to the most severely affected areas.

Idioma originalInglés
Título de la publicación alojadaIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1680-1683
Número de páginas4
ISBN (versión digital)9798350320107
DOI
EstadoPublicada - 2023
Evento2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, Estados Unidos
Duración: 16 jul. 202321 jul. 2023

Serie de la publicación

NombreInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volumen2023-July

Conferencia

Conferencia2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
País/TerritorioEstados Unidos
CiudadPasadena
Período16/07/2321/07/23

Huella

Profundice en los temas de investigación de 'Semi-Supervised Classification of Collapsed Building Using Remote Sensing, In-Placed Sensors, and Fragility Functions'. En conjunto forman una huella única.

Citar esto