Segment Anything Model for Scan-to-Structural Analysis in Cultural Heritage

Demitrios Galanakis, Stuardo Lucho, Emmanuel Maravelakis, Nikolaos Bolanakis, Antonios Konstantaras, Nectarios Vidakis, Markos Petousis, Sylvie Treuillet, Xavier Desquesnes, Xavier Brunetaud

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Segment anything model (SAM) proposed by META Artificial Intelligence (AI) has disrupted the space of Deep Learning (DL) and Machine Learning (ML) and claims performance that outrivals conventional Convolutional Neural Networks (CNNs). The well recognized success of foundation models paved the way towards Natural Language Processing (NLP), which in computer vision domain, rests upon the concept of vision transformers (ViT). The claimed scalability and zero-shot predictability of the proposed mode has spurred extensive research among different fields. In this sense, this paper aims to investigate Segment Anything Model (SAM) potential in cultural heritage (CH) inclined scenarios. This is part of an ongoing project that seeks to implement scan-to-structural analysis at stone level. Based on the findings of this research, SAM zero-shot segmentation ability is quite promising for complex scene understanding. In addition, its tendency to favor small objects may provide a unique opportunity for damage detection and defects classification. Finally, even without any pre-training, SAM exhibits remarkable performance in edge detection and masking, without sacrificing generalizability and its accuracy in segmentation correlates to spatial resolution and background separation.

Idioma originalInglés
Título de la publicación alojadaEEITE 2024 - Proceedings of 2024 5th International Conference in Electronic Engineering, Information Technology and Education
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350372878
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento5th International Conference in Electronic Engineering, Information Technology and Education, EEITE 2024 - Chania, Grecia
Duración: 29 may. 202431 may. 2024

Serie de la publicación

NombreEEITE 2024 - Proceedings of 2024 5th International Conference in Electronic Engineering, Information Technology and Education

Conferencia

Conferencia5th International Conference in Electronic Engineering, Information Technology and Education, EEITE 2024
País/TerritorioGrecia
CiudadChania
Período29/05/2431/05/24

Huella

Profundice en los temas de investigación de 'Segment Anything Model for Scan-to-Structural Analysis in Cultural Heritage'. En conjunto forman una huella única.

Citar esto