Safe mobility support system using crowd mapping and avoidance route planning using VLM

Sena Saito, Kenta Tabata, Renato Miyagusuku, Koichi Ozaki

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Autonomous mobile robots offer promising solutions for labor shortages and increased operational efficiency. However, navigating safely and effectively in dynamic environments, particularly crowded areas, remains challenging. This paper proposes a novel framework that integrates Vision-Language Models (VLM) and Gaussian Process Regression (GPR) to generate dynamic crowd-density maps ("Abstraction Maps") for autonomous robot navigation. Our approach utilizes VLM's capability to recognize abstract environmental concepts, such as crowd densities, and represents them probabilistically via GPR. Experimental results from real-world trials on a university campus demonstrated that robots successfully generated routes avoiding both static obstacles and dynamic crowds, enhancing navigation safety and adaptability.

Idioma originalInglés
Título de la publicación alojadaRCAR 2025 - IEEE International Conference on Real-Time Computing and Robotics
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas727-732
Número de páginas6
ISBN (versión digital)9798331502058
DOI
EstadoPublicada - 2025
Publicado de forma externa
Evento2025 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2025 - Toyama, Japón
Duración: 1 jun. 20256 jun. 2025

Serie de la publicación

NombreRCAR 2025 - IEEE International Conference on Real-Time Computing and Robotics

Conferencia

Conferencia2025 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2025
País/TerritorioJapón
CiudadToyama
Período1/06/256/06/25

Huella

Profundice en los temas de investigación de 'Safe mobility support system using crowd mapping and avoidance route planning using VLM'. En conjunto forman una huella única.

Citar esto