Robustness Assessment of End-to-End Deep Ultrasound Beamformers Using Adversarial Perturbations

Itamar Salazar-Reque, Roberto Lavarello

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Ultrasound beamformers play a critical role in medical imaging, and understanding their robustness under worst-case scenarios is essential for reliable performance. This study investigates the adversarial robustness of two beamformers that used deep neural networks (DNN) trained in an end-to-end fashion by producing B-mode reconstructions directly from raw ultrasound channel data. Results reveal contrasting behaviors under adversarial perturbations. The initially superior beamformer in clean cases, becomes highly susceptible to perturbations, resulting in irregular inclusion shapes and artifacts while the other exhibiting greater resistance. Image quality metrics confirm these findings, with drops of up to 50 dB for one beamformer while the other decreasing 10 dB. Differences in target data and learned transformations in DNNs contribute to these contrasting behaviors. Overall, this study sheds light on DNN-based beamformer robustness and provides insights for future design considerations.

Idioma originalInglés
Título de la publicación alojada2024 IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350349085
DOI
EstadoPublicada - 2024
Evento2nd IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024 - Montevideo, Uruguay
Duración: 8 may. 202410 may. 2024

Serie de la publicación

Nombre2024 IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024 - Proceedings

Conferencia

Conferencia2nd IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2024
País/TerritorioUruguay
CiudadMontevideo
Período8/05/2410/05/24

Huella

Profundice en los temas de investigación de 'Robustness Assessment of End-to-End Deep Ultrasound Beamformers Using Adversarial Perturbations'. En conjunto forman una huella única.

Citar esto