Robustifying stability of the Fast iterative shrinkage thresholding algorithm for ℓ1 regularized problems

Gustavo Silva, Paul Rodriguez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The fast iterative shrinkage-thresholding algorithm (FISTA) is a well-known first order method used to minimize '1 regularized problems. However, it is also a non-monotone algorithm that can exhibit a sudden and gradual oscillatory behavior during the convergence. One of the parameters that directly affects the convergence of the FISTA method, whose optimal value is typically unknown, is the step-size (SS) that is linked to the Lipschitz constant. Depending on a suitable selection of the SS either manual or automatic, and the SS evolution throughout iterations, e.g. constant, decreasing, or increasing sequence, the practical performance can differ in orders of magnitude with or without stability issues (oscillations or, in the worst case, divergence). In this paper, we propose an algorithm, which has two variants, to address the stability issues in case of ill-chosen parameters for a given SS policy (either manual or adaptive). The proposed method structurally consists of an instability prediction rule based on the ∞ norm of the gradient, and a correction for it, which can interpreted as an under-relaxation technique.

Idioma originalInglés
Título de la publicación alojada29th European Signal Processing Conference, EUSIPCO 2021 - Proceedings
EditorialEuropean Signal Processing Conference, EUSIPCO
Páginas2064-2068
Número de páginas5
ISBN (versión digital)9789082797060
DOI
EstadoPublicada - 2021
Evento29th European Signal Processing Conference, EUSIPCO 2021 - Dublin, Irlanda
Duración: 23 ago. 202127 ago. 2021

Serie de la publicación

NombreEuropean Signal Processing Conference
Volumen2021-August
ISSN (versión impresa)2219-5491

Conferencia

Conferencia29th European Signal Processing Conference, EUSIPCO 2021
País/TerritorioIrlanda
CiudadDublin
Período23/08/2127/08/21

Huella

Profundice en los temas de investigación de 'Robustifying stability of the Fast iterative shrinkage thresholding algorithm for ℓ1 regularized problems'. En conjunto forman una huella única.

Citar esto