Road Multilabel Semantic Segmentation from Satellite Images Using Convolutional Neural Networks

Edson Caceres, Cesar Beltran, Ferdinand Pineda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Road semantic segmentation in satellite images is a very important and studied field in the state of the art since having road infrastructure is quite significant for decision making in various areas of a country. The recovery of this information occurs through time-consuming large processes, and they may involve a considerable logistical displacement. In this study, we propose two U-shaped architectures to the problem of road multilabel segmentation from high resolution satellite images. Since we do not have a proper dataset to optimize our model, a procedure is defined to create samples from a base dataset. Quantitative evaluations achieve values above 93.69% on the considered metrics. Likewise, qualitative evaluations exhibit an appropriate generalization of the segmentation models since inferences protrude over ground truths in the experiments. The full implementation of this study is available at https://github.com/edson2495/road-multiclass-segmentation.

Idioma originalInglés
Título de la publicación alojadaIEEE Andescon, ANDESCON 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350355284
DOI
EstadoPublicada - 2024
Evento12th IEEE Andescon, ANDESCON 2024 - Cusco, Perú
Duración: 11 set. 202413 set. 2024

Serie de la publicación

NombreIEEE Andescon, ANDESCON 2024 - Proceedings

Conferencia

Conferencia12th IEEE Andescon, ANDESCON 2024
País/TerritorioPerú
CiudadCusco
Período11/09/2413/09/24

Huella

Profundice en los temas de investigación de 'Road Multilabel Semantic Segmentation from Satellite Images Using Convolutional Neural Networks'. En conjunto forman una huella única.

Citar esto