Riemann manifold Langevin methods on stochastic volatility estimation

Mauricio Zevallos, Loretta Gasco, Ricardo Ehlers

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this article, we perform Bayesian estimation of stochastic volatility models with heavy tail distributions using Metropolis adjusted Langevin (MALA) and Riemman manifold Langevin (MMALA) methods. We provide analytical expressions for the application of these methods, assess the performance of these methodologies in simulated data, and illustrate their use on two financial time series datasets.
Idioma originalEspañol
Páginas (desde-hasta)7942-7956
Número de páginas15
PublicaciónCommunications in Statistics: Simulation and Computation
Volumen46
EstadoPublicada - 26 nov. 2017

Citar esto