TY - JOUR
T1 - Revisiting Syllables in Language Modelling and their Application on Low-Resource Machine Translation
AU - Oncevay, Arturo
AU - Rojas, Kervy Dante Rivas
AU - Sanchez, Liz Karen Chavez
AU - Zariquiey, Roberto
N1 - Publisher Copyright:
© 2022 Proceedings - International Conference on Computational Linguistics, COLING. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Language modelling and machine translation tasks mostly use subword or character inputs, but syllables are seldom used. Syllables provide shorter sequences than characters, require less-specialised extracting rules than morphemes, and their segmentation is not impacted by the corpus size. In this study, we first explore the potential of syllables for open-vocabulary language modelling in 21 languages. We use rule-based syllabification methods for six languages and address the rest with hyphenation, which works as a syllabification proxy. With a comparable perplexity, we show that syllables outperform characters and other subwords. Moreover, we study the importance of syllables on neural machine translation for a non-related and low-resource language-pair (Spanish–Shipibo-Konibo). In pairwise and multilingual systems, syllables outperform unsupervised subwords, and further morphological segmentation methods, when translating into a highly synthetic language with a transparent orthography (Shipibo-Konibo). Finally, we perform some human evaluation, and discuss limitations and opportunities.
AB - Language modelling and machine translation tasks mostly use subword or character inputs, but syllables are seldom used. Syllables provide shorter sequences than characters, require less-specialised extracting rules than morphemes, and their segmentation is not impacted by the corpus size. In this study, we first explore the potential of syllables for open-vocabulary language modelling in 21 languages. We use rule-based syllabification methods for six languages and address the rest with hyphenation, which works as a syllabification proxy. With a comparable perplexity, we show that syllables outperform characters and other subwords. Moreover, we study the importance of syllables on neural machine translation for a non-related and low-resource language-pair (Spanish–Shipibo-Konibo). In pairwise and multilingual systems, syllables outperform unsupervised subwords, and further morphological segmentation methods, when translating into a highly synthetic language with a transparent orthography (Shipibo-Konibo). Finally, we perform some human evaluation, and discuss limitations and opportunities.
UR - http://www.scopus.com/inward/record.url?scp=85165759682&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85165759682
SN - 2951-2093
VL - 29
SP - 4258
EP - 4267
JO - Proceedings - International Conference on Computational Linguistics, COLING
JF - Proceedings - International Conference on Computational Linguistics, COLING
IS - 1
T2 - 29th International Conference on Computational Linguistics, COLING 2022
Y2 - 12 October 2022 through 17 October 2022
ER -