Relationship between entanglement and polarization in tripartite states

C. R.M. Montenegro La Torre, Y. Yugra, F. De Zela

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)


Entanglement and polarization of pure, two-qubit systems are known to be constrained by the relationship C2+P2=1 . Here, C stands for concurrence, a standard measure of entanglement, and P refers to the degree of polarization of either of the two, single-qubit subsystems. The above constraint may be understood as reflecting that a system cannot be in a pure state, if it is entangled with another one. In order to explore the connection between entanglement and polarization beyond two-qubit systems, we addressed states in which at least one of the parties has dimensionality greater than two. The case of pure, tripartite states offered itself as a timely candidate. We focussed on three qubits and studied the connection between one qubit's polarization and its entanglement with the other two taken together. We derived new constraints, akin to the above one, and submitted them to experimental tests using single photons entangled in polarization. The latter provided two qubits, each one attached to one photon. The third qubit was chosen to be the path (momentum) of one of the photons. Our experimental results confirmed the validity of the new constraints. Our theoretical results hold also for classical light. Possible experimental tests could be done with so-called structured light beams.

Idioma originalInglés
Número de artículo105202
PublicaciónJournal of Optics (United Kingdom)
EstadoPublicada - oct. 2022


Profundice en los temas de investigación de 'Relationship between entanglement and polarization in tripartite states'. En conjunto forman una huella única.

Citar esto