Regularization parameter-free convolutional sparse coding via projections onto the ℓ1-Ball and the discrepancy principle

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN's regularization parameter greatly influences the quality of the reconstructed image. Results for an automatic and sensible selection of this parameter are very limited for the CSC / CBPDN case.In this paper we propose a regularization parameter-free method to solve the CSC problem via its projection onto the ℓ1-Ball formulation coupled with a warm-start like strategy, which, driven by the Morozov's discrepancy principle, adaptively increases/decreases its constrain at each major iteration. While the time performance of our proposed method is slower than that measured when solving CSC for a fixed regularization parameter, our computational results also show that our method's reconstruction quality is, in average, very close (within 0.16 SNR, 0.16 PSNR, 0.003 SSIM) to that obtained when the regularization parameter for CBPDN is selected to produce the best (SNR) quality result.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 - Proceedings
EditoresNelly Pustelnik, Zheng-Hua Tan, Zhanyu Ma, Jan Larsen
EditorialIEEE Computer Society
ISBN (versión digital)9781538654774
DOI
EstadoPublicada - 31 oct. 2018
Evento28th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 - Aalborg, Dinamarca
Duración: 17 set. 201820 set. 2018

Serie de la publicación

NombreIEEE International Workshop on Machine Learning for Signal Processing, MLSP
Volumen2018-September
ISSN (versión impresa)2161-0363
ISSN (versión digital)2161-0371

Conferencia

Conferencia28th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018
País/TerritorioDinamarca
CiudadAalborg
Período17/09/1820/09/18

Huella

Profundice en los temas de investigación de 'Regularization parameter-free convolutional sparse coding via projections onto the ℓ1-Ball and the discrepancy principle'. En conjunto forman una huella única.

Citar esto