Real-Time Sign Language Recognition

Cristian Amaya, Victor Murray

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

We propose an automatic system to recognize sign language using principal component analysis (PCA) and one-vs.-all support vector machines (SVM) classification. The algorithm was trained and tested using a total of 500 images of the five vowels. The method includes color information, to detect skin regions, hand segmentation, using morphological operations and filters, feature extraction in hand regions using PCA, and classification using SVM. A graphical user interface was implemented for real-time recognition. For this first approach, the system was optimized for working with the five vowels showing results of a testing accuracy above 80% and an execution time of 59 milliseconds per frame.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728193779
DOI
EstadoPublicada - set. 2020
Publicado de forma externa
Evento27th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020 - Virtual, Lima, Perú
Duración: 3 set. 20205 set. 2020

Serie de la publicación

NombreProceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020

Conferencia

Conferencia27th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020
País/TerritorioPerú
CiudadVirtual, Lima
Período3/09/205/09/20

Huella

Profundice en los temas de investigación de 'Real-Time Sign Language Recognition'. En conjunto forman una huella única.

Citar esto