RANDOM GENERATED DICTIONARIES FOR CONVOLUTIONAL SPARSE CODING: AN ELM INTERPRETATION FOR SIMPLE CSC APPLICATIONS

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The most basic ELM (extreme learning machines) architecture consists on a single-hidden layer feedforward neural network, with random input weights, plus a densely connected output layer whose weights must be learned. Among other interpretations, it can be understood as using an untrained dictionary (with random entries) along with a non-linear activation function to obtain a representation. Compared to Neural Networks (NN) or Convolutional NN (CNN), ELM is very fast to train. Inspired by the ELM methodology, in this paper we explore the usefulness of using a randomly generated filterbank (FB) as the convolutional dictionary in convolutional sparse coding (CSC) representations and assess its performance for simple applications such denoising and super resolution, when compared to learned FBs. Our main conclusions are that a randomly generated FB (i) has a competitive (restoration) performance when compared to a learned FB, (ii) its performance depends on the actual distribution of its values, i.e. Gaussian, uniform, lognormal, etc., and problem, and (iii) it may ease or potentially eliminate the need for the CDL (convolutional dictionary learning) step in CSR's applications.

Idioma originalInglés
Título de la publicación alojada2022 IEEE International Conference on Image Processing, ICIP 2022 - Proceedings
EditorialIEEE Computer Society
Páginas126-130
Número de páginas5
ISBN (versión digital)9781665496209
DOI
EstadoPublicada - 2022
Evento29th IEEE International Conference on Image Processing, ICIP 2022 - Bordeaux, Francia
Duración: 16 oct. 202219 oct. 2022

Serie de la publicación

NombreProceedings - International Conference on Image Processing, ICIP
ISSN (versión impresa)1522-4880

Conferencia

Conferencia29th IEEE International Conference on Image Processing, ICIP 2022
País/TerritorioFrancia
CiudadBordeaux
Período16/10/2219/10/22

Huella

Profundice en los temas de investigación de 'RANDOM GENERATED DICTIONARIES FOR CONVOLUTIONAL SPARSE CODING: AN ELM INTERPRETATION FOR SIMPLE CSC APPLICATIONS'. En conjunto forman una huella única.

Citar esto