Réseaux de neurones récurrents à fonctions de base radiales: RRFR - Application au pronostic

Ryad Zemouri, Daniel Racoceanu, Noureddine Zerhouni

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

This paper introduces a Recurrent Radial Basis Function network (RRBF) for non-linear system prognosis. The training process is divided in two stages. First, the parameters of the RRBF are determined by the unsupervised k-means algorithm. The ineffectiveness of this algorithm is improved by the FuzzyMinMax technique. In the second stage, a multivariable linear regression supervised learning technique is used to determine the weights of the connections between the hidden and output layer. We test the RRBF on the Box and Jenkins furnace database. This application shows that the RRBF is able to predict the evolution of a non-linear system. The performances of the RRBF are compared with those of the TDRBF. The RRBF gives better results for long run predictions. The FuzzyMinMax technique makes the K-means more stable.

Título traducido de la contribuciónRecurrent Radial Basis Function (RRBF) and its application to (non-linear) system prognosis
Idioma originalFrancés
Páginas (desde-hasta)307-338
Número de páginas32
PublicaciónRevue d'Intelligence Artificielle
Volumen16
N.º3
DOI
EstadoPublicada - 2002
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Réseaux de neurones récurrents à fonctions de base radiales: RRFR - Application au pronostic'. En conjunto forman una huella única.

Citar esto