Quantifying Synthesis and Fusion and their Impact on Machine Translation

Arturo Oncevay, Duygu Ataman, Niels van Berkel, Barry Haddow, Alexandra Birch, Johannes Bjerva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Theoretical work in morphological typology offers the possibility of measuring morphological diversity on a continuous scale. However, literature in Natural Language Processing (NLP) typically labels a whole language with a strict type of morphology, e.g. fusional or agglutinative. In this work, we propose to reduce the rigidity of such claims, by quantifying morphological typology at the word and segment level. We consider Payne (2017)'s approach to classify morphology using two indices: synthesis (e.g. analytic to polysynthetic) and fusion (agglutinative to fusional). For computing synthesis, we test unsupervised and supervised morphological segmentation methods for English, German and Turkish, whereas for fusion, we propose a semi-automatic method using Spanish as a case study. Then, we analyse the relationship between machine translation quality and the degree of synthesis and fusion at word (nouns and verbs for English-Turkish, and verbs in English-Spanish) and segment level (previous language pairs plus English-German in both directions). We complement the word-level analysis with human evaluation, and overall, we observe a consistent impact of both indexes on machine translation quality.

Idioma originalInglés
Título de la publicación alojadaNAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics
Subtítulo de la publicación alojadaHuman Language Technologies, Proceedings of the Conference
EditorialAssociation for Computational Linguistics (ACL)
Páginas1308-1321
Número de páginas14
ISBN (versión digital)9781955917711
DOI
EstadoPublicada - 2022
Publicado de forma externa
Evento2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022 - Hybrid, Seattle, Estados Unidos
Duración: 10 jul. 202215 jul. 2022

Serie de la publicación

NombreNAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conferencia

Conferencia2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022
País/TerritorioEstados Unidos
CiudadHybrid, Seattle
Período10/07/2215/07/22

Huella

Profundice en los temas de investigación de 'Quantifying Synthesis and Fusion and their Impact on Machine Translation'. En conjunto forman una huella única.

Citar esto