Production of and K0 S in jets in p–Pb collisions at √sNN = 5.02 TeV and pp collisions at √s = 7 TeV

J. L. Bazo Alba, Ernesto Calvo Villar, Alberto Gago, C. Soncco

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The production of baryons and K0 S mesons (V0 particles) was measured in p–Pb collisions at √sNN = 5.02 TeV and pp collisions at √s = 7 TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum (pT) in high multiplicity pp and p–Pb collisions. Hard scatterings are selected on an eventby-event basis with jets reconstructed with the anti-kT algorithm using charged particles. The production of strange particles associated with jets pch T, jet > 10 and pch T, jet > 20 GeV/c in p–Pb collisions, and with jet pch T, jet > 10 GeV/c in pp collisions is reported as a function of pT. Its dependence on angular distance from the jet axis, R(V0, jet), for jets with pch T, jet > 10 GeV/c in p–Pb collisions is reported as well. The pTdifferential production spectra of strange particles associated with jets are found to be harder compared to that in the underlying event and both differ from the inclusive measurements. In events containing a jet, the density of the V0 particles in the underlying event is found to be larger than the density in the minimum bias events. The /K0 S ratio associated with jets in p–Pb collisions is consistent with the ratio in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio within jets is consistently lower than the one obtained in the underlying event and it does not show the characteristic enhancement of baryons at intermediate pT often referred to as “baryon anomaly” in the inclusive measurements.
Idioma originalEspañol
PublicaciónPhysics Letters B
Volumen827
EstadoPublicada - 8 mar. 2022

Citar esto