Prediction Models of Oral Diseases: A Systematic Review of the Literature

Mayra Alejandra Dávila Olivos, Félix Melchor Santos López

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Oral diseases impose a significant burden on many countries, affecting individuals throughout their lives and causing pain, disfigurement, and even death. These diseases share similar risk factors with other important non-communicable diseases. In high-income countries, dental treatment accounts for 5% of healthcare expenditures and 20% of patient expenses. Unfortunately, low- and middle-income countries often struggle to afford preventive and treatment services for oral health disorders. Prediction models are crucial in optimizing resource allocation, particularly in environments where advanced sensing technologies foster healthier living conditions. In this context, this study conducts a systematic review to explore the applications and potential of artificial intelligence in addressing these challenges. This study aims to identify the solutions employed and the performance metrics used to assess their impact on public health, ultimately striving for improved outcomes.

Idioma originalInglés
Título de la publicación alojadaEmerging Research in Intelligent Systems - Proceedings of the CIT 2023 Volume 1
EditoresGonzalo Fernando Olmedo Cifuentes, Diego Gustavo Arcos Avilés, Hernán Vinicio Lara Padilla
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas309-322
Número de páginas14
ISBN (versión impresa)9783031522543
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento18th Multidisciplinary International Congress on Science and Technology, CIT 2023 - Sangolqui, Ecuador
Duración: 13 nov. 202317 nov. 2023

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen902
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia18th Multidisciplinary International Congress on Science and Technology, CIT 2023
País/TerritorioEcuador
CiudadSangolqui
Período13/11/2317/11/23

Huella

Profundice en los temas de investigación de 'Prediction Models of Oral Diseases: A Systematic Review of the Literature'. En conjunto forman una huella única.

Citar esto