Prediction Models for Car Theft Detection Using CCTV Cameras and Machine Learning: A Systematic Review of the Literature

Joseph Ramses Méndez Cam, Félix Melchor Santos López, Víctor Genaro Rosales Urbano, Eulogio Guillermo Santos de la Cruz

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Car theft is a constant problem in parking lots and places where cars are left unattended. Car theft detection is a time-consuming task due to the human resources that are required. Therefore, the task of checking closed circuit television (CCTV) cameras can be automated using machine learning techniques. The implementation of such a system would mean an optimization of the current technology. Even if a CCTV camera is installed, it requires human labor to supervise the area, which is a repetitive and time-consuming task. A machine learning algorithm could simplify the task and attend to many cameras without decreasing the attention on each one. In this context, a systematic review of the literature on machine learning was conducted based on four research questions using the PRISMA methodology. The research method may help to find the current methods used in similar applications and possible ways to implement the proposed automatic solution. This scientific study retrieved 384 articles from Web of Science, Scopus, and IEEE databases. The number of studies used to answer the research questions was 58. Finally, analyzing the most frequent models and metrics, Convolutional Neural Networks and Accuracy were the most referenced, with 30 and 42 mentions, respectively.

Idioma originalInglés
Título de la publicación alojadaCSEI
Subtítulo de la publicación alojadaInternational Conference on Computer Science, Electronics and Industrial Engineering (CSEI) - Advances and Applications in Computer Science, Electronics and Industrial Engineering. Proceedings of the Conference on Computer Science, Electronics and Industrial Engineering, CSEI 2022
EditoresMarcelo V. Garcia, Carlos Gordón-Gallegos
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas184-200
Número de páginas17
ISBN (versión impresa)9783031305917
DOI
EstadoPublicada - 2023
EventoInternational Conference on Computer Science, Electronics, and Industrial Engineering, CSEI 2022 - Ambato, Ecuador
Duración: 7 nov. 202211 nov. 2022

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen678 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

ConferenciaInternational Conference on Computer Science, Electronics, and Industrial Engineering, CSEI 2022
País/TerritorioEcuador
CiudadAmbato
Período7/11/2211/11/22

Huella

Profundice en los temas de investigación de 'Prediction Models for Car Theft Detection Using CCTV Cameras and Machine Learning: A Systematic Review of the Literature'. En conjunto forman una huella única.

Citar esto