Optimized algorithm for learning Bayesian network super-structures

Edwin Villanueva, Carlos Dias Maciel

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Estimating super-structures (SS) as structural constraints for learning Bayesian networks (BN) is an important step of scaling up these models to high-dimensional problems. However, the literature has shown a lack of algorithms with an appropriate accuracy for such purpose. The recent Hybrid Parents and Children - HPC (De Morais and Aussem, 2010) has shown an interesting accuracy, but its local design and high computational cost discourage its use as SS estimator. We present here the OptHPC, an optimized version of HPC that implements several optimizations to get an efficient global method for learning SS. We demonstrate through several experiments that OptHPC estimates SS with the same accuracy than HPC in about 30% of the statistical tests used by it. Also, OptHPC showed the most favorable balance sensitivity/specificity and computational cost for use as super-structure estimator when compared to several state-of-the-art methods.

Idioma originalInglés
Título de la publicación alojadaICPRAM 2012 - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods
Páginas217-222
Número de páginas6
EstadoPublicada - 2012
Publicado de forma externa
Evento1st International Conference on Pattern Recognition Applications and Methods, ICPRAM 2012 - Vilamoura, Algarve, Portugal
Duración: 6 feb. 20128 feb. 2012

Serie de la publicación

NombreICPRAM 2012 - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods
Volumen1

Conferencia

Conferencia1st International Conference on Pattern Recognition Applications and Methods, ICPRAM 2012
País/TerritorioPortugal
CiudadVilamoura, Algarve
Período6/02/128/02/12

Huella

Profundice en los temas de investigación de 'Optimized algorithm for learning Bayesian network super-structures'. En conjunto forman una huella única.

Citar esto