TY - JOUR
T1 - On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity
AU - Agelet de Saracibar, C.
AU - Chiumenti, M.
AU - Valverde, Q.
AU - Cervera, M.
PY - 2006/2/1
Y1 - 2006/2/1
N2 - The use of stabilization methods is becoming an increasingly well-accepted technique due to their success in dealing with numerous numerical pathologies that arise in a variety of applications in computational mechanics. In this paper a multiscale finite element method technique to deal with pressure stabilization of nearly incompressibility problems in nonlinear solid mechanics at finite deformations is presented. A J2-flow theory plasticity model at finite deformations is considered. A mixed formulation involving pressure and displacement fields is used as starting point. Within the finite element discretization setting, continuous linear interpolation for both fields is considered. To overcome the Babuška-Brezzi stability condition, a multiscale stabilization method based on the orthogonal subgrid scale (OSGS) technique is introduced. A suitable nonlinear expression of the stabilization parameter is proposed. The main advantage of the method is the possibility of using linear triangular or tetrahedral finite elements, which are easy to generate and, therefore, very convenient for practical industrial applications. Numerical results obtained using the OSGS stabilization technique are compared with results provided by the P1 standard Galerkin displacements linear triangular/tetrahedral element, P1/P1 standard mixed linear displacements/linear pressure triangular/tetrahedral element and Q1/P0 mixed bilinear/trilinear displacements/constant pressure quadrilateral/hexahedral element for 2D/3D nearly incompressible problems in the context of a nonlinear finite deformation J2 plasticity model.
AB - The use of stabilization methods is becoming an increasingly well-accepted technique due to their success in dealing with numerous numerical pathologies that arise in a variety of applications in computational mechanics. In this paper a multiscale finite element method technique to deal with pressure stabilization of nearly incompressibility problems in nonlinear solid mechanics at finite deformations is presented. A J2-flow theory plasticity model at finite deformations is considered. A mixed formulation involving pressure and displacement fields is used as starting point. Within the finite element discretization setting, continuous linear interpolation for both fields is considered. To overcome the Babuška-Brezzi stability condition, a multiscale stabilization method based on the orthogonal subgrid scale (OSGS) technique is introduced. A suitable nonlinear expression of the stabilization parameter is proposed. The main advantage of the method is the possibility of using linear triangular or tetrahedral finite elements, which are easy to generate and, therefore, very convenient for practical industrial applications. Numerical results obtained using the OSGS stabilization technique are compared with results provided by the P1 standard Galerkin displacements linear triangular/tetrahedral element, P1/P1 standard mixed linear displacements/linear pressure triangular/tetrahedral element and Q1/P0 mixed bilinear/trilinear displacements/constant pressure quadrilateral/hexahedral element for 2D/3D nearly incompressible problems in the context of a nonlinear finite deformation J2 plasticity model.
KW - Finite deformation
KW - Incompressibility
KW - Multiscale methods
KW - Orthogonal subgrid scale methods
KW - Plasticity
KW - Stabilization
KW - Stabilized finite element methods
KW - Subgrid scale methods
UR - http://www.scopus.com/inward/record.url?scp=28544436931&partnerID=8YFLogxK
U2 - 10.1016/j.cma.2005.04.007
DO - 10.1016/j.cma.2005.04.007
M3 - Article
AN - SCOPUS:28544436931
SN - 0045-7825
VL - 195
SP - 1224
EP - 1251
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
IS - 9-12
ER -