TY - JOUR
T1 - On the gene expression landscape of cancer
AU - Gonzalez, Augusto
AU - Leon, Dario A.
AU - Perera, Yasser
AU - Perez, Rolando
N1 - Publisher Copyright:
© 2023 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/2
Y1 - 2023/2
N2 - Kauffman picture of normal and tumor states as attractors in an abstract state space is used in order to interpret gene expression data for 15 cancer localizations obtained from The Cancer Genome Atlas. A principal component analysis of this data unveils the following qualitative aspects about tumors: 1) The state of a tissue in gene expression space can be described by a few variables. In particular, there is a single variable describing the progression from a normal tissue to a tumor. 2) Each cancer localization is characterized by a gene expression profile, in which genes have specific weights in the definition of the cancer state. There are no less than 2500 differentially-expressed genes, which lead to power-like tails in the expression distribution functions. 3) Tumors in different localizations share hundreds or even thousands of differentially expressed genes. There are 6 genes common to the 15 studied tumor localizations. 4) The tumor region is a kind of attractor. Tumors in advanced stages converge to this region independently of patient age or genetic characteristics. 5) There is a landscape of cancer in gene expression space with an approximate border separating normal tissues from tumors.
AB - Kauffman picture of normal and tumor states as attractors in an abstract state space is used in order to interpret gene expression data for 15 cancer localizations obtained from The Cancer Genome Atlas. A principal component analysis of this data unveils the following qualitative aspects about tumors: 1) The state of a tissue in gene expression space can be described by a few variables. In particular, there is a single variable describing the progression from a normal tissue to a tumor. 2) Each cancer localization is characterized by a gene expression profile, in which genes have specific weights in the definition of the cancer state. There are no less than 2500 differentially-expressed genes, which lead to power-like tails in the expression distribution functions. 3) Tumors in different localizations share hundreds or even thousands of differentially expressed genes. There are 6 genes common to the 15 studied tumor localizations. 4) The tumor region is a kind of attractor. Tumors in advanced stages converge to this region independently of patient age or genetic characteristics. 5) There is a landscape of cancer in gene expression space with an approximate border separating normal tissues from tumors.
UR - http://www.scopus.com/inward/record.url?scp=85148396410&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0277786
DO - 10.1371/journal.pone.0277786
M3 - Article
C2 - 36802377
AN - SCOPUS:85148396410
SN - 1932-6203
VL - 18
JO - PLoS ONE
JF - PLoS ONE
IS - 2 February
M1 - e0277786
ER -