ON SINGULAR REAL ANALYTIC LEVI-FLAT FOLIATIONS*

Arturo Fernandez-Perez, Rogerio Mol, Rudy Rosas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

A singular real analytic foliation F of real codimension one on an n-dimensional complex manifold M is Levi-flat if each of its leaves is foliated by immersed complex manifolds of dimension n − 1. These complex manifolds are leaves of a singular real analytic foliation L which is tangent to F. In this article, we classify germs of Levi-flat foliations at (Cn, 0) under the hypothesis that L is a germ of holomorphic foliation. Essentially, we prove that there are two possibilities for L, from which the classification of F derives: either it has a meromorphic first integral or it is defined by a closed rational 1−form. Our local results also allow us to classify real algebraic Levi-flat foliations on the complex projective space Pn = PnC.

Idioma originalInglés
Páginas (desde-hasta)1007-1028
Número de páginas22
PublicaciónAsian Journal of Mathematics
Volumen24
N.º6
DOI
EstadoPublicada - dic. 2020

Huella

Profundice en los temas de investigación de 'ON SINGULAR REAL ANALYTIC LEVI-FLAT FOLIATIONS*'. En conjunto forman una huella única.

Citar esto