On Multi-Horizon Forecasting of Copper Price Returns Using Deep Learning Techniques

M. Carhuas, Soledad Espezua, Edwin Villanueva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Forecasting copper prices is vital for stakeholders in industries reliant on this commodity. The challenge arises from the market's dynamism and the multitude of factors affecting prices. This study introduces neural network models for predicting short-term copper price returns. Utilizing historical pricing data and macroeconomic indicators from 2007 to 2021, we discover that models dedicated to specific forecasting horizons outshine those designed for multiple horizons. Notably, Long Short- Term Memory (LSTM) models consistently delivered the most accurate predictions for both one-week and one-month future returns, confirming their robustness in capturing the complex patterns inherent in the copper market.

Idioma originalInglés
Título de la publicación alojadaIEEE Andescon, ANDESCON 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350355284
DOI
EstadoPublicada - 2024
Evento12th IEEE Andescon, ANDESCON 2024 - Cusco, Perú
Duración: 11 set. 202413 set. 2024

Serie de la publicación

NombreIEEE Andescon, ANDESCON 2024 - Proceedings

Conferencia

Conferencia12th IEEE Andescon, ANDESCON 2024
País/TerritorioPerú
CiudadCusco
Período11/09/2413/09/24

Huella

Profundice en los temas de investigación de 'On Multi-Horizon Forecasting of Copper Price Returns Using Deep Learning Techniques'. En conjunto forman una huella única.

Citar esto