Nodal separators of holomorphic foliations

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We study a special kind of local invariant sets of singular holomorphic foliations called nodal separators. We define notions of equisingularity and topological equivalence for nodal separators as intrinsic objects and, in analogy with the celebrated theorem of Zariski for analytic curves, we prove the equivalence of these notions. We give some applications in the study of topological equivalences of holomorphic foliations. In particular, we show that the nodal singularities and its eigenvalues in the resolution of a generalized curve are topological invariants.
Idioma originalEspañol
Páginas (desde-hasta)511-539
Número de páginas29
PublicaciónAnnales de l'Institut Fourier
Volumen68
EstadoPublicada - 1 ene. 2018

Citar esto