Multiscale AM-FM methods on EEG signals for motor task classification

Christian Flores Vega, Victor Murray

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

In this manuscript, we present the use of customized, multiscale amplitude-modulation frequency-modulation (AMFM) methods on electroencephalography (EEG) brain signals during the subject development a motor task: right hand and left hand. This approach is compared to various non-linear patterns and methods that have been applied in order to characterize and understand the dynamic behavior of the EEG signals. The AM-FM methods have been optimized in terms of multiscale filters for the mu band (8-12 Hz). The instantaneous AM-FM values are processed using their probability density function and classified using multiple layer perceptron (MLP) and the partial least squares regression (PLS). The system is tested using the standard BCI dataset with results with a precision to 89% and an area under the ROC to 91%.

Idioma originalInglés
Título de la publicación alojada2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas6210-6214
Número de páginas5
ISBN (versión digital)9781424492718
DOI
EstadoPublicada - 4 nov. 2015
Publicado de forma externa
Evento37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italia
Duración: 25 ago. 201529 ago. 2015

Serie de la publicación

NombreProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volumen2015-November
ISSN (versión impresa)1557-170X

Conferencia

Conferencia37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
País/TerritorioItalia
CiudadMilan
Período25/08/1529/08/15

Huella

Profundice en los temas de investigación de 'Multiscale AM-FM methods on EEG signals for motor task classification'. En conjunto forman una huella única.

Citar esto