Multi-parameter Regression of Photovoltaic Systems using Selection of Variables with the Method: Recursive Feature Elimination for Ridge, Lasso and Bayes

Jose Cruz, Wilson Mamani, Christian Romero, Ferdinand Pineda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The research focuses on the application of regularization techniques in a multiparameter linear regression model to predict the DC voltage levels of a photovoltaic system from 14 variables. Two predictions were made, in the first prediction, all the variables were taken, 14 independent variable and one dependent variable; Shrinkage Regularization types were applied, as a variable selection method. In the second prediction we propose the use of semiautomatic methods, we used Recursive Feature Elimination (RFE) as a variable selection method and to obtained results. We applied the following Shrinkage regularization methods: Lasso, Ridge and Bayesian Ridge. The results were validated demonstrating: linearity, normality of error terms, non-self-correlation and homoscedasticity. In all cases the precision obtained is greater than 91.99%.

Idioma originalInglés
Título de la publicación alojadaMachine Learning, Optimization, and Data Science - 6th International Conference, LOD 2020, Revised Selected Papers
EditoresGiuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Giorgio Jansen, Vincenzo Sciacca, Panos Pardalos, Giovanni Giuffrida, Renato Umeton
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas191-202
Número de páginas12
ISBN (versión impresa)9783030645793
DOI
EstadoPublicada - 2020
Publicado de forma externa
Evento6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020 - Siena, Italia
Duración: 19 jul. 202023 jul. 2020

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen12566 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020
País/TerritorioItalia
CiudadSiena
Período19/07/2023/07/20

Huella

Profundice en los temas de investigación de 'Multi-parameter Regression of Photovoltaic Systems using Selection of Variables with the Method: Recursive Feature Elimination for Ridge, Lasso and Bayes'. En conjunto forman una huella única.

Citar esto