Mobile robot path planning in complex environments using ant colony optimization algorithm

Ronald Uriol, Antonio Moran

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

20 Citas (Scopus)

Resumen

Ant Colony Optimization (ACO) algorithm has been applied to solve the path planning problem of mobile robot in complex environments. The algorithm parameters have been analysed and tuned for different working areas with obstacles in different number, sizes and shapes. Also, the performance of ACO algorithm was tested for different resolutions of working area representations. In all cases, it was possible to find optimal or near-optimal minimum-length paths from the initial to final desired positions without collision with obstacles or wall-borders.

Idioma originalInglés
Título de la publicación alojada2017 3rd International Conference on Control, Automation and Robotics, ICCAR 2017
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas15-21
Número de páginas7
ISBN (versión digital)9781509060870
DOI
EstadoPublicada - 7 jun. 2017
Evento3rd International Conference on Control, Automation and Robotics, ICCAR 2017 - Nagoya, Japón
Duración: 22 abr. 201724 abr. 2017

Serie de la publicación

Nombre2017 3rd International Conference on Control, Automation and Robotics, ICCAR 2017

Conferencia

Conferencia3rd International Conference on Control, Automation and Robotics, ICCAR 2017
País/TerritorioJapón
CiudadNagoya
Período22/04/1724/04/17

Huella

Profundice en los temas de investigación de 'Mobile robot path planning in complex environments using ant colony optimization algorithm'. En conjunto forman una huella única.

Citar esto