MIxed Gaussian-impulse noise image restoration via total variation

P. Rodríguez, R. Rojas, B. Wohlberg

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

43 Citas (Scopus)

Resumen

Several Total Variation (TV) regularization methods have recently been proposed to address denoising under mixed Gaussian and impulse noise. While achieving high-quality denoising results, these new methods are based on complicated cost functionals that are difficult to optimize, which negatively affects their computational performance. In this paper we propose a simple cost functional consisting of a TV regularization term and ℓ 2 and ℓ 1 data fidelity terms, for Gaussian and impulse noise respectively, with local regularization parameters selected by an impulse noise detector. The computational performance of the proposed algorithm greatly exceeds that of the state of the art algorithms within the TV framework, and its reconstruction quality performance is competitive for high noise levels, for both grayscale and vector-valued images.

Idioma originalInglés
Título de la publicación alojada2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012 - Proceedings
Páginas1077-1080
Número de páginas4
DOI
EstadoPublicada - 2012
Evento2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012 - Kyoto, Japón
Duración: 25 mar. 201230 mar. 2012

Serie de la publicación

NombreICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (versión impresa)1520-6149

Conferencia

Conferencia2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012
País/TerritorioJapón
CiudadKyoto
Período25/03/1230/03/12

Huella

Profundice en los temas de investigación de 'MIxed Gaussian-impulse noise image restoration via total variation'. En conjunto forman una huella única.

Citar esto