Metastability of reversible condensed zero range processes on a finite set

J. Beltrán, C. Landim

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

42 Citas (Scopus)

Resumen

Let r : S × S → R + be the jump rates of an irreducible random walk on a finite set S, reversible with respect to some probability measure m. For α > 1, let g: N → R + be given by g(0) = 0, g(1) = 1, g(k) = (k/k - 1) α, k ≥ 2. Consider a zero range process on S in which a particle jumps from a site x, occupied by k particles, to a site y at rate g(k)r (x, y). Let N stand for the total number of particles. In the stationary state, as N ↑ ∞ all particles but a finite number accumulate on one single site. We show in this article that in the time scale N 1+α the site which concentrates almost all particles evolves as a random walk on S whose transition rates are proportional to the capacities of the underlying random walk. © 2011 Springer-Verlag.
Idioma originalEspañol
Páginas (desde-hasta)781-807
Número de páginas27
PublicaciónProbability Theory and Related Fields
Volumen152
EstadoPublicada - 1 abr. 2012

Citar esto