Resumen
A disposable polymeric pMALDI array with a universal metal cation-chelatable surface for pretreatment/signal enhancement of phosphoproteins and/or phosphopeptides in complex samples was developed. Acrylic acid N-hydroxysuccinimide ester and methyl methacrylate monomers were copolymerized in thin layer molds in a 1:13.3 molar ratio and subsequently treated with Nα,Nα-bis(carboxymethyl)-L-lysine to obtain a structured planar MALDI array. The prepared NTA pMALDI chip array was activated with metal cations (e.g., Ga(III), Ni(II)), and the selectivities for phosphopeptides (e.g., trypsin-digested α-casein (α-Cas), and phospho-angiotensin II (p-Ang)) were evaluated using MALDI-TOF/MS. The highest selectivity for proteins was observed for the Ni(II) - NTA chip. The p-Ang was enriched in the presence of BSA tryptic peptides ca. 5 times and represented the major peak after sample adsorption/washing on Ga(III) - NTA chip. The performance of the Ga(III)-chip, tested on α-Cas tryptic digest, is fully comparable to commercial systems. Additionally, higher MW peptides and limited methionine oxidation were observed with the chip. A combination of selective absorption of phosphoproteins on Ni(II)-chips and the further enrichment of digested phosphopeptides on the Ga(III)-chip can prove to be very useful for fast identification of unknown proteins using MALDI-TOF/MS.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 3842-3848 |
Número de páginas | 7 |
Publicación | Journal of Proteome Research |
Volumen | 6 |
N.º | 9 |
DOI | |
Estado | Publicada - set. 2007 |
Publicado de forma externa | Sí |