Measuring the gender discrimination: A machine learning approach

Hugo Alatrista-Salas, Bruno Esposito, Miguel Nunez-Del-Prado, Maria Valdivieso

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Gender discrimination is a widely analyzed problem, which seems to affect different countries and cultures over time. Nowadays, we are witnesses of the social inequality reflected by the salary difference between women and men for the same employment. Since the incorporation of women into the labor market in the 1980s, the wage gap between males and females has been a subject of study. One of the traditional arguments has been linked to the feminized occupations associated with sex stereotypes, as well as, low wage, birth, and discrimination in the labor categories. In the present work, we apply clustering algorithms to the PHOGUE dataset to analyze salary difference between males and females in Spain and England.

Idioma originalInglés
Título de la publicación alojada2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1-6
Número de páginas6
ISBN (versión digital)9781538637340
DOI
EstadoPublicada - 2 jul. 2017
Publicado de forma externa
Evento2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Arequipa, Perú
Duración: 8 nov. 201710 nov. 2017

Serie de la publicación

Nombre2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedings
Volumen2017-November

Conferencia

Conferencia2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017
País/TerritorioPerú
CiudadArequipa
Período8/11/1710/11/17

Huella

Profundice en los temas de investigación de 'Measuring the gender discrimination: A machine learning approach'. En conjunto forman una huella única.

Citar esto