Measurement of prompt D+ s -meson production and azimuthal anisotropy in Pb–Pb collisions at √sNN = 5.02 TeV

J. L. Bazo Alba, Ernesto Calvo Villar, Alberto Gago, C. Soncco

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The production yield and angular anisotropy of prompt D+ s mesons were measured as a function of transverse momentum (pT) in Pb–Pb collisions at a centre-of-mass energy per nucleon pair √sNN = 5.02 TeV collected with the ALICE detector at the LHC. D+ s mesons and their charge conjugates were reconstructed at midrapidity (|y| < 0.5) from their hadronic decay channel D+ s → φπ+, with φ → K−K+, in the pT intervals 2 < pT < 50 GeV/c and 2 < pT < 36 GeV/c for the 0–10% and 30–50% centrality intervals. For pT > 10 GeV/c, the measured D+ s -meson nuclear modification factor RAA is consistent with the one of non-strange D mesons within uncertainties, while at lower pT a hint for a D+ s -meson RAA larger than that of non-strange D mesons is seen. The enhanced production of D+ s relative to nonstrange D mesons is also studied by comparing the pT-dependent D+ s /D0 production yield ratios in Pb–Pb and in pp collisions. The ratio measured in Pb–Pb collisions is found to be on average higher than that in pp collisions in the interval 2 < pT < 8 GeV/c with a significance of 2.3σ and 2.4σ for the 0–10% and 30–50% centrality intervals. The azimuthal anisotropy coefficient v2 of prompt D+ s mesons was measured in Pb–Pb collisions in the 30–50% centrality interval and is found to be compatible with that of non-strange D mesons. The main features of the measured RAA, D+ s /D0 ratio, and v2 as a function of pT are described by theoretical calculations of charm-quark transport in a hydrodynamically expanding quark–gluon plasma including hadronisation via charm-quark recombination with light quarks from the medium. The pT-integrated production yield of D+ s mesons is compatible with the prediction of the statistical hadronisation model.
Idioma originalEspañol
PublicaciónPhysics Letters B
Volumen827
EstadoPublicada - 4 mar. 2022

Citar esto