Low-resource AMR-to-Text Generation: A Study on Brazilian Portuguese

Marco Antonio Sobrevilla Cabezudo, Thiago Alexandre Salgueiro Pardo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

This work presents a study of how varied strategies for tackling lowresource AMR-to-text generation for three approaches are helpful in Brazilian Portuguese. Specifically, we explore the helpfulness of additional translated corpus, different granularity levels in input representation, and three preprocessing steps. Results show that translation is useful. However, it must be used in each approach differently. In addition, finer-grained representations as characters and subwords improve the performance and reduce the bias on the development set, and preprocessing steps are helpful in different contexts, being delexicalisation and preordering the most important ones.

Idioma originalInglés
Páginas (desde-hasta)85-97
Número de páginas13
PublicaciónProcesamiento del Lenguaje Natural
Volumen68
DOI
EstadoPublicada - 1 mar. 2022
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Low-resource AMR-to-Text Generation: A Study on Brazilian Portuguese'. En conjunto forman una huella única.

Citar esto