Leaf Venation Enhancing for Texture Feature Extraction in a Plant Classification Task

Carlos Arrasco, Sofia Khlebnikov, Arturo Oncevay, Cesar Beltran Castanon

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

In a computer science approach, the plant classification task focuses on the extraction of many leaf attributes, such as texture or veins, which are closely related and commonly analyzed together. Thereby, this study proposes a method to enhance the venation patterns over the leaf area, in order to improve the texture feature extraction in windows areas in the plant species identification. Regarding the experimentation, two types of texture features are contrasted, and it is performed over an own dataset with high-resolution image of 10 plant species. The obtained results demonstrate that the veins enhancing process improve the species classification task significantly for a texture descriptor based on the analysis of relation between neighboring pixels.

Idioma originalInglés
Título de la publicación alojada2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538646250
DOI
EstadoPublicada - 23 ene. 2019
Evento2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018 - Gudalajara, México
Duración: 6 nov. 20189 nov. 2018

Serie de la publicación

Nombre2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018

Conferencia

Conferencia2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018
País/TerritorioMéxico
CiudadGudalajara
Período6/11/189/11/18

Huella

Profundice en los temas de investigación de 'Leaf Venation Enhancing for Texture Feature Extraction in a Plant Classification Task'. En conjunto forman una huella única.

Citar esto