Keypoint detection based on the unimodality test of HOGs

M. A. Cataño, J. Climent

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

We present a new method for keypoint detection. The main drawback of existing methods is their lack of robustness to image distortions. Small variations of the image lead to big differences in keypoint localizations. The present work shows a way of determining singular points in an image using histograms of oriented gradients (HOGs). Although HOGs are commonly used as keypoint descriptors, they have not been used in the detection stage before. We show that the unimodality of HOGs can be used as a measure of significance of the interest points. We show that keypoints detected using HOGs present higher robustness to image distortions, and we compare the results with existing methods, using the repeatability criterion.

Idioma originalInglés
Título de la publicación alojadaAdvances in Visual Computing - 8th International Symposium, ISVC 2012, Revised Selected Papers
Páginas189-198
Número de páginas10
EdiciónPART 1
DOI
EstadoPublicada - 2012
Evento8th International Symposium on Visual Computing, ISVC 2012 - Rethymnon, Crete, Grecia
Duración: 16 jul. 201218 jul. 2012

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 1
Volumen7431 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia8th International Symposium on Visual Computing, ISVC 2012
País/TerritorioGrecia
CiudadRethymnon, Crete
Período16/07/1218/07/12

Huella

Profundice en los temas de investigación de 'Keypoint detection based on the unimodality test of HOGs'. En conjunto forman una huella única.

Citar esto