Innovative deep learning approach for biomedical data instantiation and visualization

Ryad Zemouri, Daniel Racoceanu

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

5 Citas (Scopus)

Resumen

One of the main problems that most of biomedical applications face, is represented by the massive amount of unlabeled data. Manually analyzing and classifying massive database by human expert is mostly unfeasible, being-in certain limited conditions (still, extremely time-consuming)-partially been done, only for simple signatures, easily recognizable by an expert. Concerning this aspect, medical experts face two challenging problems: how to select the most significant data for labeling, and what is the minimum size of the data set-but sufficient to define each pathology-to perform the training of the classifier. In this chapter, we propose a new method, based on a visual data analysis, to build an efficient classifier with a minimum of labeled data. An encoder, part of a Convolutional Variational Autoencoder (CVAE), is used as a data projection for a 2D-visualization. The input vectors are encoded into a 2D-latent space, which helps the expert to visually analyze the spatial distribution of the training data set.

Idioma originalInglés
Título de la publicación alojadaDeep Learning for Biomedical Data Analysis
Subtítulo de la publicación alojadaTechniques, Approaches, and Applications
EditorialSpringer International Publishing
Páginas171-196
Número de páginas26
ISBN (versión digital)9783030716769
ISBN (versión impresa)9783030716752
DOI
EstadoPublicada - 13 jul. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Innovative deep learning approach for biomedical data instantiation and visualization'. En conjunto forman una huella única.

Citar esto